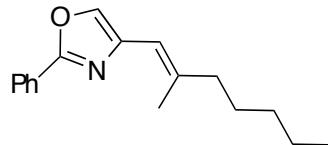
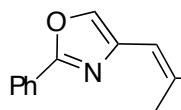


Palladium Catalyzed Cross Coupling of Terminal Alkynes With 4-Trifloyl Oxazole: Studies Toward the Construction of the C26-C31 Subunit of Phorboxazole A

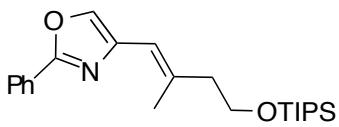

Jennifer V. Schaus and James S. Panek*

Department of Chemistry
Metcalf Center for Science and Engineering
Boston University
Boston, Massachusetts 02215

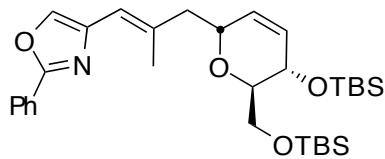
Supporting Information


^1H NMR spectra were recorded on a 400 MHz spectrometer at ambient temperature, unless otherwise stated. ^{13}C NMR were recorded on a 75.5 Hz spectrometer at ambient temperature. Chemical shifts are reported in parts per million relative to chloroform (^1H , δ 7.24; ^{13}C , δ 77.0). Data for ^1H NMR are reported as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, b = broad). All ^{13}C NMR were recorded with complete proton decoupling. Infrared spectra were recorded on a FT-spectrophotometer. High resolution mass spectra were obtained in the Boston University Mass Spectrometry Laboratory. Analytical thin layer chromatography was performed on 0.25 mm silica gel 60-F plates. Flash chromatography was performed as previously described.¹ When specified as "anhydrous", solvents were distilled and / or stored over 4 Å molecular sieves prior to use. Yields refer to chromatographically pure materials, unless otherwise stated. Tetrahydrofuran was freshly distilled under argon from sodium / benzophenone ketyl. Dichloromethane (CH_2Cl_2) was distilled from calcium hydride prior to use. *N*-Methyl pyrrolidine (NMP) was distilled from calcium hydride. $\text{Pd}(\text{PPh}_3)_4$ was prepared as described in "Palladium Reagents in Organic Syntheses," p 2, Richard F. Heck, Academic Press, New York, 1985. DMPU was distilled over 4 Å molecular sieves. Methyl iodide (MeI) was passed through a plug of neutral Al_2O_3 before use. All other reagents were used as supplied by Strem Chemicals, Aldrich and Alfa Aesar. All reactions were performed under a dry argon or nitrogen atmosphere in flame dried glassware.

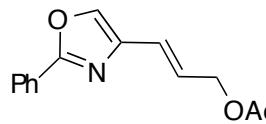
General Procedure for the Carboalumination illustrated for: 4-(*E*-2-Methyl-1-heptynyl)-2-phenyl-oxazole (4a).

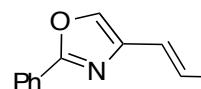


To a flame-dried 10 mL round bottom flask equipped with a stir bar was added zirconocene dichloride (5 mg, 0.017 mmol), and THF (0.5 mL). The solution was cooled to 0 °C and AlMe_3 (0.1 mL, 2.0 M in hexanes) was slowly added. The reaction mixture was stirred at 0 °C for 0.5 h and 1 h at rt. A solution of 1-heptyne (22 μL , 0.17 mmol) in THF (0.1 mL) was added, and the reaction was stirred at rt for 3 h. The solvents were remove under high vacuum and the

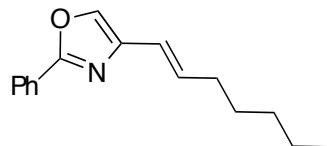

residual was redissolved in THF (1 mL). A solution of triflate **2** (50 mg, 0.17 mmol) and Pd(PPh₃)₄ (20 mg, 0.017 mmol) in THF (1.7 mL) was then added via cannula. The reaction mixture was placed in an oil bath at 60 °C and stirred at constant temperature for 1.5 h. The reaction mixture was then cooled to rt, diluted with H₂O (10 mL), and extracted with CHCl₃ (3 x 5 mL). The combined organic layers were washed with saturated brine (5 mL), dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification by flash chromatography on SiO₂ provided the desired coupling product **4a** as a clear oil in 75% yield (33 mg, 0.129 mmol). ¹H NMR (CDCl₃) δ: 8.03 (m, 2H), 7.55 (s, 1H); 7.43 (m, 3H); 6.12 (s, 1H); 2.17 (t, 2H, J₁ = 7.6 Hz, J₂ = 7.6 Hz); 1.96 (s, 3H); 1.50 (t, 2H, J₁ = 7.2 Hz, J₂ = 7.6 Hz); 1.30 (m, 4H); 0.88 (t, 3H, J₁ = 6.8 Hz, J₂ = 7.2 Hz). ¹³C NMR (CDCl₃) δ: 160.6; 142.3; 139.9; 134.7; 130.2; 128.8; 126.4; 114.5; 40.5; 31.5; 27.5; 22.6; 18.8; 14.0. IR: 3061; 2956; 2929; 2857; 1558; 1488; 1449; 1339; 1105; 1025; 934. CIMS+NH₄ (NH₃ gas): 256, 255, 212, 199, 105. CIHRMS+NH₄ calculated for C₁₇H₂₁NO+H= 256.16; found 256.1690.

4-(E-2-methyl-styryl)-2-phenyl-oxazole (4b): Purification on SiO₂ (EtOAc: Hexanes) provided **4b** as a clear oil in 72 % yield. ¹H NMR (CDCl₃) δ: 8.07 (m, 2H); 7.72 (s, 1H); 7.35 (m, 10H) 6.60 (s, 1H); 2.45 (s, 3H). ¹³C NMR (CDCl₃) δ: 160.9; 143.6; 140.0; 139.2; 135.9; 130.4; 128.7; 128.3; 127.3; 126.4; 125.9; 116.9; 18.4. IR: 3440; 2360; 2342; 2107; 1643. CIMS+NH₄ (NH₃ gas): 262, 232, 129, 105. CIHRMS+NH₄ calculated for C₁₈H₁₅NO+H= 262.12; found 262.1216.


4-(E-2-Methyl-4-triisopropylsilyloxy-1-butenyl)-2-phenyl-oxazole (4c): Purification on SiO₂ (EtOAc: Hexanes) provided **4c** as a clear oil in 72 % yield. ¹H NMR (CDCl₃) δ: 8.03 (m, 2H); 7.55 (s, 1H); 7.43 (m, 3H); 6.15 (s, 1H); 3.84 (2H, t, J₁ = 7.2 Hz, J₂ = 7.2 Hz); 2.44 (2H, t, J₁ = 7.2 Hz, J₂ = 7.2 Hz); 2.02 (s, 3H); 1.07 (m, 3H); 1.04 (d, 18H, J = 5.2 Hz). ¹³C NMR (CDCl₃) δ: 160.5; 139.7; 139.0; 134.9; 130.2; 128.7; 127.5; 126.3; 116.2; 62.6; 44.0; 19.4; 18.0; 11.9. IR: 3443; 2945; 1653; 1464; 1103. CIMS+NH₄ (NH₃ gas): 428, 342, 280, 207. CIHRMS+NH₄ calculated for C₂₆H₄₁NO₂Si+H = 428.29; found 428.2930.

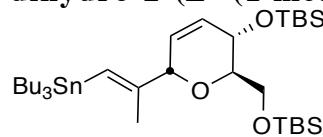

4-[(4S, 7S, 8R)-E, Z-4,8-epoxy-7,9-(di(tert-butyldimethylsilyloxy))-2-methyl-non-1,5-dienyl]-2-phenyl-oxazole (4d): Purification on SiO₂ (EtOAc: Hexanes) provided **4d** as a clear oil in 68 % yield. ¹H NMR (CDCl₃) δ: 8.01 (m, 2H); 7.43 (m, 4H), 5.88 (m, 3H), 4.36 (t, 1H, J = 7.2 Hz); 4.09 (m, 1H); 3.75 (m, 3H); 2.45 (m, 2H), 2.24 (s, 3H); 0.87 (m, 18H); 0.05 (m, 12H). ¹³C NMR (CDCl₃) δ: 134.2,

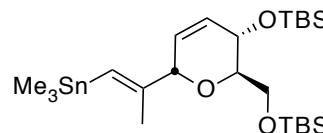
130.2, 130.0, 128.7, 127.9, 126.5, 126.1, 80.5, 74.4, 70.2, 69.9, 62.8, 61.4, 25.9, 25.8,, 23.5, 18.1, 11.6, -4.4, -4.9, -5.4, -5.6. IR: 2950, 2929, 2862, 1717, 1465, 1394, 1361, 1105, 930. CIMS+NH₄ (NH₃ gas): 556, 397, 357, 339, 117. CIHRMS+NH₄ calculated for C₃₁H₄₉NO₄Si₂+H= 556.3212; found 556.3288.


General Procedure for Stille Coupling illustrated for: 4-(3-acetoxy-1-propenyl)-2-phenyl-oxazole (6c).

A 10 mL round bottom flask under nitrogen was charged with LiCl (0.044 g, 1.06 mmol), stannane **5c** (0.144 g, 0.36 mmol), triflate **2** (0.10 g, 0.341 mmol) and DMF (3 mL, 0.1 M). Pd(PPh₃)₄ (16 mg, 0.013 mmol) was added as a solid and the flask was equipped with a water condenser. The reaction mixture was warmed to 60 °C and stirred at constant temperature for 2 h. The reaction mixture was allowed to cool to rt, diluted with H₂O (10mL), and extracted with CH₂Cl₂ (3 x 5 mL). The combined organic extracts were washed with H₂O (5 x 5mL) then brine (5 mL), dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification by flash chromatography on SiO₂ (EtOAc/PE 5:95) afforded **6c** as a clear oil (0.056 g, 0.28 mmol). ¹H NMR (CDCl₃) δ: 8.05 (m, 2H); 7.54 (s, 1H); 7.44 (m, 3H); (6.52, m, 2H); 6.34 (d, 1H, J = 16Hz); 4.18 (t, 2H, J₁ = 6.8 Hz, J₂ = 6.4 Hz); 2.05 (s, 3H). ¹³C NMR (CDCl₃) δ: 171.1; 160.5; 134.3; 130.1; 128.7; 128.4; 128.1; 126.5; 120.5; 63.7; 32.0; 21.0. IR: 2960; 1738; 1366; 1037. CIMS+NH₄ (NH₃ gas): 258, 227, 197, 168, 122, 105. CIHRMS+NH₄ calculated for C₁₅H₁₅NO₃+H= 258.11; found 258.1113.

2-Phenyl-4-styryl-oxazole (6a): The crude product was obtained as a solid which was triturated with cold pentane to provide pure **6a** as a buff powder in 80% yield ¹H NMR (CDCl₃) δ: (270 MHz) 8.10 (m, 2H); 7.70 (s, 1H); 7.426 (m, 10H); 7.38 (d, 1H, J = 23.6) 6.96 (d, 1H, J = 21.2 Hz). ¹³C NMR (CDCl₃) δ: 161.7; 140.3; 136.8; 135.3; 130.6; 130.5; 128.7; 128.6; 127.7; 126.5; 116.4. IR: 3405, 2360, 2342, 1684, 1448, 1265. CIMS+NH₄ (NH₃ gas): 262, 248, 115, 105. CIHRMS+NH₄ calculated for C₁₇H₁₃NO+H= 247.10; found 247.1053.




4-(1-Heptenyl)-2-phenyl-oxazole (6b): Purification on SiO₂ (EtOAc: Hexanes) provided **6b** as a clear oil in 80 % yield.¹H NMR (CDCl₃) δ: 8.03 (m, 2H); 7.50 (s, 1H); 7.43 (m, 3H); 6.53 (m, 1H); 6.24 (d, 1H, J = 15.6 Hz); 2.20 (dd, 2H, J₁ = 6 Hz, J₂ = 7.6 Hz); 1.45 (m, 2 H), 1.19 (m, 4H); 0.88 (m, 3 Hz). ¹³C NMR (CDCl₃) δ: 133.7; 131.5; 130.3; 128.9; 128.6; 126.6; 126.4; 126.2; 117.9; 32.8; 31.4; 28.7; 22.6; 14.0. IR: 2956; 2928; 2857; 1696;

1558; 1450; 1270; 1105; 967 CIMS+NH₄ (NH₃ gas): 242, 241, 198, 105. CIHRMS+NH₄ calculated for C₁₆H₁₉NO+H= 242.15; found 242.1544.

Procedure for the Generation of (Me₃Sn)₂CuCNLi₂: In a 10 mL round bottom flask was syringed hexamethylditin (0.177 mL, 0.86 mmol) and THF (1.7 mL). The solution was cooled to -78 °C and MeLi (0.614 mL, 0.86 mmol, 1,4 M in hexanes) was slowly added. The reaction was stirred at -78 °C for 0.5 h. In a 25 mL Schlenk flask was charged CuCN (39 mg, 0.43 mmol). After flame drying the CuCN, the Schlenk was cool to rt under argon and THF (c. 0.05 mL) was added to make a slurry. The slurry was cooled to 0 °C and the previous solution was added via cannula. The reaction mixture was stirred at 0 °C for 20 minutes before using in subsequent reactions.

General Procedures for the Addition of Higher Order Stannyl Cuprate to Alkynes illustrated for (2*S*, 5*S*, 6*R*)-6(tertbutylsilyloxy)methyl-5(tertbutylsilyloxy)-5,6 dihydro-2-(*E* -(1'methyl-2'-tributylstannyl-ethenyl)-'2*H*-pyran (8).

 To a solution of stannyl cuprate (5.7 mmol) in THF (16 mL) at -78 °C was added pyran **7** (2.0 g, 5.3 mmol) in THF (c 0.5 mL). The reaction mixture was stirred for 15 minutes at -78 °C. MeI (6.9 mL, 100 mmol) and DMPU (1.6 mL) were sequentially added. The reaction mixture was stirred for 3.5 h at -78°C and then poured into a saturated solution of NH₄Cl (40 mL). The solution was extracted with EtOAc (3 x 15 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated *in vacuo*. Purification by flash chromatography on SiO₂, treated with 3% Et₃N in hexanes, eluting with 100% hexanes, yielded stannane **8** in 80% (2.88 g, 4.18 mmol). ¹H NMR (CDCl₃) δ: 5.78 (m, 3H), 4.52 (b, 1H), 4.05 (m, 1H), 3.82 (m, 1H), 2.33 (m, 1H), 3.38 (m, 1H), 1.84 (s, 3H), 1.36 (m, 27H), 0.872 (m, 18H), 0.05 (m, 12H). ¹³C NMR (CDCl₃) δ: 151.9, 130.1, 128.8, 126.8, 74.5, 64.6, 63.3, 28.9, 29.2, 27.3, 26.0, 25.8, 13.7, 10.1, -4.4, -4.9, -5.4, -5.6. IR: 2957, 2927, 2856, 1464, 1376, 1252, 1092, 837. CIMS+NH₄ (NH₃ gas): 648.6, 631.3, 457.1, 291.0, 249.2, 159.0. CIHRMS+NH₄ calculated for C₃₃H₆₈O₃Si₂Sn+H= 687.3725; found 687.3629.

 (**2*S*, 5*S*, 6*R***)-6(tertbutylsilyloxy)methyl-5(tertbutylsilyloxy)-5,6 dihydro-2-(*E* -(1'methyl-2'-trimethylstannyl-ethenyl)-'2*H*-pyran (**9**). Purification on deactivated SiO₂ (3%Et₃N:hexanes, eluting with 100% hexanes) provided **9** as a clear oil in 70 % yield. ¹H NMR (CDCl₃) δ: 5.75 (m, 4H), 4.50 (bd, 1H, J=10.4 Hz), 4.19 (d, 1H, J=7.6 Hz), 3.85 (m, 1H), 3.64 (m, 1H), 3.40 (m, 1H), 1.85 (s, 3H), 0.88 (s, 18H), 0.11 (m, 12H). ¹³C

NMR (CDCl₃) δ: 151.7, 130.5, 129.2, 127.0, 75.6, 64.5, 63.2, 27.0, 25.8, -4.4, -4.9, -5.4, -5.6. IR: 2957, 2885, 2360, 2342, 2653, 1463, 1388, 1361, 1316, 1186, 1155, 1018, 939. CIMS+NH₄ (NH₃ gas): 547.2, 505.1, 400.2, 341.1, 325.1, 209.1, 193.0. CIHRMS+NH₄ calculated for C₂₄H₅₀O₃Si₂Sn+H= 562.5192; found 562.4685.

Stille coupling of 2 and 11: 4-[(4S, 7S, 8R)-E, Z-3,7-epoxy-6,8-(di(tert-butyldimethylsilyloxy))-2-methyl-octa-1,4-dienyl]2-phenyl-oxazole (10).

In a 10 mL Schlenk flask LiCl (25 mg, 0.6 mmol) was added and flame dried. After cooling the flask to rt under argon, Pd₂(dba)₃•CHCl₃ (7 mg, 0.0067 mmol) was added. A solution of triflate **2** (33 mg, 0.11 mmol) in NMP (0.1 mL) and one of stannane **9** (0.1 g, 0.17 mmol) in NMP (0.1 mL) were added sequentially. *t*Bu₃P (3 mL, 0.015 mmol) was added via syringe. The reaction mixture was placed in an oil bath at 60 °C for 5 h. The reaction mixture was cooled to rt, diluted with CH₂Cl₂ (5 mL) and H₂O (10 mL). The layers were separated, and the aqueous layer extracted with CH₂Cl₂ (3 x 3 mL). The combined organic layers were washed with H₂O (3 x 15 mL) then saturated brine (15 mL), dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification by flash chromatography on SiO₂ provided **10** (34 mg, 0.006 mmol) as a clear oil in 60% yield. ¹H NMR (CDCl₃) δ: 8.02 (m, 2H), 7.62 (s, 1H), 7.42 (m, 3H), 6.36 (s, 1H), 5.85 (m, 2H), 4.61 (b, 1H), 4.09 (m, 1H), 3.82 (dd, 1H, J1 = 2.4 Hz, 8.8 Hz), 3.66 (m, 1H), 3.43 (m, 1H), 2.07 (s, 3H), 0.86 (m, 18 H), 0.054 (m, 12H). ¹³C NMR (CDCl₃) δ: 139.3, 135.8, 133.6, 131.3, 130.3, 128.7, 128.5, 127.5, 126.4, 117.7, 47.5, 63.5, 62.65, 25.9, 25.7, -4.4, -4.9, -5.4, -5.6. IR: 2956, 2929, 2857, 1717, 1472, 1463, 1389, 1361, 1257, 1092, 1006, 909. CIMS+NH₄ (NH₃ gas): 551.1, 484.1, 368.2, 264.0. CIHRMS+NH₄ calculated for C₃₀H₄₇NO₄Si₂+H= 542.3043; found 542.3157 .

Additional Notes and References

(1) Still, W. C.; Kahn, M; Mitra, A. *J. Org. Chem.* **1978**, 43, 2923-2925.